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Neoclassical Closure:*
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*F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239
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Particle ‘closure’:

The distribution function is split into drifting Maxwellian
and perturbed parts.
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The evolution of the Maxwellian along a characteristic is
determined by:
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where wj=Vvj-vs, and vj is the velocity of the j-th particle,
and

th:i—ss(ijxB) .

The traceless stress tensor and heat flux are determined
by:

where o Is a normalization such that
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NUMERICAL ALGORITHM

Temporal Discretization:

» Developed by D. Barnes, R. Nebel and D. Nystrom
e Used in PIC3D, TPCN and DMOM

(finite difference)
» Abbreviated flowchart->



Abbreviated NIMROD Physics Algorithm Flowchart

Read and interpret grid information, initial conditions
and physical parameters from pre-processor file

Main time-step advance
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At present, we advance the cold, collisionless fluid
equations.
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where fg is a numerical time-centering parameter.
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In NIMROD, the algorithm was first implemented in the
low-frequency (large At) limit, where 1<<ri<<re and

where M is the total momentum density.

We now have a run-time option to switch between 2-fluid
and ‘MHD.’

Combining the species equations with Ampere’s law,
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which is solved implicitly.



Thus, the present version of NIMROD advances the
following set of equations:
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In the large At limit, with B fixed and A and M ~eik-x, the
numerical dispersion relation is
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The compressional wave comes from the first factor:
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Spatial Discretization:

* Finite elements
» Block decomposition into
-> structured blocks of logically rectangular cells
-> unstructured regions of triangular cells
-> sample tokamak grids
» Splined quantities are ‘scaled’ tensor components; for
example, consider Ampere’s law (a’s are linear spline

functions and g’s are metric elements):
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where JU) = (g;)¥24' is a ‘scaled contravariant’ or physical
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-> separates parallel and perpendicular directions on
field-aligned grids

-> preserves operator symmetry

-> avoids distortions due to nonuniform grid, which
were encountered with ‘straight’ tensor
representations



When spatial discretization is added to the numerical
dispersion relation, we find terms which represent errors
due to the finite element formulation.

Assume: k =kyX +kyy , B=Byy +B,2
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